Search results

Search for "thin-film transistors" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • microfluidic paper-based analytical devices (µPADs) [57][58][59][60] and thin-film transistors (TFTs) [61][62][63][64][65] have been widely investigated. Recently, they have also been applied in various energy-related devices [66][67][68]. Although paper is intrinsically insulating, conductive materials (e.g
PDF
Album
Review
Published 01 Feb 2021

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • modern applications, for example as a critical component in organic thin-film transistors [2]. However, and despite the success of using thin insulating NaCl films for molecular decoupling [3], it is now understood that ultrathin layers are often not sufficient to truly insulate a molecular assembly. To
PDF
Album
Full Research Paper
Published 26 Oct 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • achieved by selective ion sputtering in thin film transistors has also been observed in He+-irradiated InGaZnO devices [27]. This irradiation-induced carrier activation depends not only on the fluence of the ion beam, but also on the absolute number of defects that can be introduced. Therefore, the
PDF
Album
Full Research Paper
Published 04 Sep 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • Telecommunications, Xi’an 710121, China 10.3762/bjnano.11.53 Abstract Among the patterning technologies for organic thin-film transistors (OTFTs), the fabrication of OTFT electrodes using polymer templates has attracted much attention. However, deviations in the electrode alignment occur because the coefficient of
  • achieved the alignment of OTFT electrodes using the composite template. Keywords: coefficient of thermal expansion; dry blending; organic thin-film transistors (OTFTs); OTFT electrodes; PDMS/SiO2 composite template; Introduction Organic thin-film transistors (OTFTs) provide a platform to construct next
PDF
Album
Full Research Paper
Published 20 Apr 2020

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • temperature on the initial electrical characteristics and photo-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). The extracted electrical parameters from transfer curves suggest that a low-temperature treatment maintains a high density of defects in the IGZO
  • commercialization has accelerated the development of consumption electronics and micromachining technology. One of the most successful modern-day microelectronic products are metal-oxide thin-film transistors (TFTs) that guarantee large-scale integrated circuits for applications in transparent and flexible flat
PDF
Album
Full Research Paper
Published 27 May 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • ; Introduction Increasing the dielectric constant of gate dielectrics for oxide thin-film transistors (TFTs) improves the performance of such devices. Challenges are in the processing of these high-k dielectrics and various approaches were tested over time. Among them, low-cost and innovative methods were
PDF
Album
Full Research Paper
Published 12 Feb 2019
Graphical Abstract
  • and illumination stress (NBIS)-induced instability in amorphous InGaZnO thin-film transistors (a-IGZO TFTs) with various active layer thicknesses (TIGZO) were investigated. The photoleakage current was found to gradually increase in a-IGZO TFTs irrespective of the TIGZO when the photon energy of
  • . Keywords: active layer thickness; gate bias; illumination stress; InGaZnO; photoleakage current; thin-film transistors; Introduction Over the last decade, the amorphous oxide-based semiconductor thin-film transistors (AOS TFTs) have attracted global attention for use in advanced display technologies due
PDF
Album
Full Research Paper
Published 26 Sep 2018

Light–Matter interactions on the nanoscale

  • Mohsen Rahmani and
  • Chennupati Jagadish

Beilstein J. Nanotechnol. 2018, 9, 2125–2127, doi:10.3762/bjnano.9.201

Graphical Abstract
  • century. Laser processing of thin-film multilayer structures has been one of the initial research directions in photonics [2]. This technique has been employed for many applications, including but not limited to the fabrication of polycrystalline silicon (poly-Si) thin-film transistors or MEMS/NEMS
PDF
Editorial
Published 10 Aug 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative
  • modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • microscopy; self-assembly; Introduction Organic semiconductors offer a wide range of possible applications, from thin-film transistors to sensors and solar cells [1][2][3][4][5][6]. Their optical and electronic properties are strongly linked to intermolecular interaction parameters associated with molecular
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • possible to use ligands that do not require high sintering temperatures for temperature-sensitive substrates [46]. Layers of metal-based inks have been used to fabricate conductive electrodes, thin-film transistors, light emitting diodes, and solar cells [32]. Ultrathin films [47], arrays of interconnected
PDF
Album
Review
Published 07 Dec 2017

Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results

  • Babak B. Naghshine and
  • Amirkianoosh Kiani

Beilstein J. Nanotechnol. 2017, 8, 1749–1759, doi:10.3762/bjnano.8.176

Graphical Abstract
  • can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Keywords: 3D transient modelling; heat transfer; laser materials processing
  • interesting applications that can introduce new possibilities to the art of laser processing. One of the most interesting applications is the fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this method, a thin film of amorphous silicon (a-Si) is deposited on a glass substrate
PDF
Album
Full Research Paper
Published 24 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • films is that the breakdown voltage remains constant across the entire capacitor area, which is typical for uniform and pinhole-free layers. The above results show that thin Parylene C films are good candidates for the gate insulating material in organic thin film transistors. For an application, it is
PDF
Album
Review
Published 28 Jul 2017

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • TiO2, which proves their attractiveness of application in electronics, inter alia, for the construction of thin-film transistors. Schematic representation of electrospinning polymer nanofibres from solution. XRD spectra of ceramic nanoparticles. TEM images of the studied nanoparticles with diffraction
PDF
Album
Full Research Paper
Published 05 Aug 2016

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • gap semiconductor (≈3.4 eV) with large exciton binding energy (60 meV). ZnO nanowires have been shown to yield stimulated emission with optical pumping (e.g., nanowire laser) [4] and have been demonstrated as photodetectors [5]. ZnO films have also been used in transparent thin film transistors [6
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility
  • as well as in thin films to investigate the solid state properties. Moreover, the aluminum complex has been implemented in organic thin film transistors devices (TFTs) to measure the charge carrier mobility. Finally, an extensive theoretical investigation has been carried out for comparison with the
  • transistor (FET) configuration, it is possible to obtain the charge carrier mobility of electrons and holes [32]. Therefore, in order to measure the field-effect mobility of Al(Op)3, thin film transistors (TFTs) based on Al(Op)3 were fabricated. A series of Al(Op)3-based TFTs were built with channel lengths
PDF
Album
Full Research Paper
Published 05 May 2015

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
  • control of the electrical properties is required for storage capacitors, non-volatile memories as well as for transparent thin-film transistors [18][19]. Moreover, the tunability of the surface roughness is advantageous when fabricating gas sensors [20]. Over the years a number of excellent reviews
PDF
Album
Review
Published 22 Jul 2014
Other Beilstein-Institut Open Science Activities